Band-limited Wavelets and Framelets in Low Dimensions
نویسندگان
چکیده
In this paper, we study the problem of constructing non-separable band-limited wavelet tight frames, Riesz wavelets and orthonormal wavelets in R and R. We first construct a class of non-separable band-limited refinable functions in low-dimensional Euclidean spaces by using univariate Meyer’s refinable functions along multiple directions defined by classic box-spline direction matrices. These non-separable band-limited definable functions are then used to construct non-separable band-limited wavelet tight frames via the unitary and oblique extension principles. However, these refinable functions cannot be used for constructing Riesz wavelets and orthonormal wavelets in low dimensions as they are not stable. Another construction scheme is then developed to construct stable refinable functions in low dimensions by using a special class of direction matrices. The resulting stable refinable functions allow us to construct a class of MRA-based non-separable band-limited Riesz wavelets and particularly band-limited orthonormal wavelets in low dimensions with small frequency support.
منابع مشابه
Band-limited Refinable Functions for Wavelets and Framelets
Extending band-limited constructions of orthonormal refinable functions, a special class of periodic functions is used to generate a family of band-limited refinable functions. Characterizations of Riesz bases and frames formed by integer shifts of these refinable functions are obtained. Such families of refinable functions are employed to construct band-limited biorthogonal wavelet bases and b...
متن کاملCompactly Supported Tensor Product Complex Tight Framelets with Directionality
Although tensor product real-valued wavelets have been successfully applied to many high-dimensional problems, they can only capture well edge singularities along the coordinate axis directions. As an alternative and improvement of tensor product real-valued wavelets and dual tree complex wavelet transform, recently tensor product complex tight framelets with increasing directionality have been...
متن کاملThe Projection Method for Multidimensional Framelet and Wavelet Analysis
The projection method is a simple way of constructing functions and filters by integrating multidimensional functions and filters along parallel superplanes in the space domain. Equivalently expressed in the frequency domain, the projection method constructs a new function by simply taking a cross-section of the Fourier transform of a multidimensional function. The projection method is linked t...
متن کاملHomogeneous Wavelets and Framelets with the Refinable Structure
Homogeneous wavelets and framelets have been extensively investigated in the classical theory of wavelets and they are often constructed from refinable functions via the multiresolution analysis. On the other hand, nonhomogeneous wavelets and framelets enjoy many desirable theoretical properties and are often intrinsically linked to the refinable structure and multiresolution analysis. In this ...
متن کاملProperties of Discrete Framelet Transforms
As one of the major directions in applied and computational harmonic analysis, the classical theory of wavelets and framelets has been extensively investigated in the function setting, in particular, in the function space L2(R). A discrete wavelet transform is often regarded as a byproduct in wavelet analysis by decomposing and reconstructing functions in L2(R) via nested subspaces of L2(R) in ...
متن کامل